An Offline Formulation of MPC for LPV Systems Using Linear Matrix Inequalities

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Results on “Robust MPC Using Linear Matrix Inequalities”

This paper presents a novel method for designing the terminal cost and the auxiliary control law (ACL) for robust MPC of uncertain linear systems, such that ISS is a priori guaranteed for the closed-loop system. The method is based on the solution of a set of LMIs. An explicit relation is established between the proposed method and H∞ control design. This relation shows that the LMI-based optim...

متن کامل

Automatic Offline Formulation of Robust Model Predictive Control Based on Linear Matrix Inequalities Method

and Applied Analysis 3 The input and output constraints are satisfied if there exists symmetric matrixX and Y such that [ X ∗ Y T Q ] ≥ 0 with X rr ≤ u 2 r,max, r = 1, 2, . . . , m,

متن کامل

SOLVING FUZZY LINEAR SYSTEMS BY USING THE SCHUR COMPLEMENT WHEN COEFFICIENT MATRIX IS AN M-MATRIX

This paper analyzes a linear system of equations when the righthandside is a fuzzy vector and the coefficient matrix is a crisp M-matrix. Thefuzzy linear system (FLS) is converted to the equivalent crisp system withcoefficient matrix of dimension 2n × 2n. However, solving this crisp system isdifficult for large n because of dimensionality problems . It is shown that thisdifficulty may be avoide...

متن کامل

A Computationally Efficient Formulation of Robust Model Predictive Control using Linear Matrix Inequalities

In this paper, we present an off-line approach for robust constrained MPC synthesis that gives an explicit control law using Linear Matrix Inequalities (LMIs). This off-line approach can address a broad class of model uncertainty descriptions with guaranteed robust stability of the closed-loop system and substantial reduction of the on-line MPC computation.

متن کامل

Controller Design Using Linear Matrix Inequalities

2.3. H∞ Performance 3. Controller Design Using Linear Matrix Inequalities 3.1. Linearizing Change of Variables – State Feedback 3.2. Linearizing Change of Variables Output Feedback 3.3. LMI Approach to Multiobjective Design 3.4. Existence of Solutions and Conservatism of Design 4. Illustrative Design Example: Robust Control of a Power System Stabilizer 4.1. Problem Description 4.2. Design Speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2014

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2014/786351